Using Kira's Platform for CS Instruction

Housekeeping Items

Webinar is recorded

Slides available along with the recording

Enter your questions in the Q&A box

Watching On Demand, and have questions?

tn@kira-learning.com for platform/course

ashe@battelle.org for anything else

UPCOMING WEBINARS

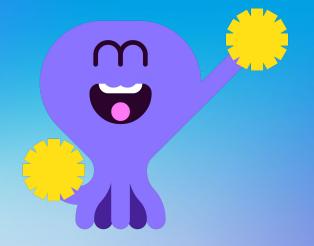
Join us for our future webinars

www.kira-learning.com/events

December 5, 4 PM CT

Preparing for and teaching the Kira Learning Middle School Course

December 12, 4 PM CT


Preparing for and teaching the Kira Learning High School Course

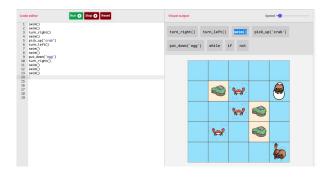
GOALS FOR THIS WEBINAR

- Details of Kira Learning's ready-to-use courses
- Overview Kira Learning platform
- In-depth exploration of platform features that support learning and teaching
- Sneak peaks at upcoming features

Kira Learning Courses

KIRA COURSES: STRUCTURE

- Courses are typically into units, each consisting of several lessons
- Each lesson consists of multiple steps
- Each step consists of an instructional video or written instructions and a practice activity
- Each step is designed to take 5-10 minutes to complete
- Each lesson is designed to take no more than 90 minutes to complete



Introduction to CS Fundamentals in Python

- Covers the basics of the Python programming language with emphasis on artificial intelligence applications and data analysis
- Students learn best practices in programming while completing a variety of exercises, assessments, and projects
- Kernels of Curiosity sprinkled throughout the course cover computer science topics beyond programming
- Satisfies AP CS Principles curriculum requirements

Middle School Introduction to Computational Thinking and Programming

- Comprehensive course which introduces the concepts of algorithmic-thinking and coding
- Hardware and software aspects of data representation, collection, storage and analysis
- Computer networks and the internet

READY-TO-USE COURSES (UPCOMING)

Artificial Intelligence Methods and Applications

- Students explore Al applications in use today, while reflecting on their impact on society.
- Deep Learning, building and training AI models using the Python libraries PyTorch, SciKit, and NumPy
- Al application development process
- Students build their own AI applications that can be shared with friends and family

Introduction to Web Development

- Fundamental concepts in Full Stack Web Development in Javascript and Python
- Hands-on projects to apply their skills, while exploring Al-relevant concepts such as a Stable Diffusion-based image classifier

Computer Science Applications with Java

- Fundamentals of computer science and how it is used in real world applications with Java
- Preparation for the AP CS A exam

TEACHER GUIDES

Lesson Plan

Unit 1 Lesson 3: Data Types

Part 1: Lesson Content Information	
Content Summary	
Lesson Steps	
Learning Goals	
Standards Alignment	
Part 2: Recommended Educator Preparation	
Preparing to lead the lesson	
Required skills	
Part 3: Recommended In-Class Instruction	
Lesson Part A	
Outline with Timings	
Before the Lesson	
Detailed Lesson Educator Notes	
Section 1: Overview (10 min.)	
Section 2: Activity (35 min.)	
Lesson Part B	
Outline with Timings	
Before the Lesson	
Detailed Lesson Educator Notes	
Section 1: Activity (10 min.)	
Section 2: Assessment (25 min.)	
Section 3: Review (10 min.)	
Reflection questions	
Part 4: Lesson Assessment Solution Reference	
Lesson Assessment Part 1	
Lesson Assessment Part 2	1

Section 1: Overview

(10 min.)

This "**Do Now" activity** is meant to get the class thinking about how we naturally use data types – specifically, integers, strings and Booleans.

Sample question-and-answer pairs (scramble the answer bank):

Sentences	Answer Bank
The first connected network of computers (before the internet) was designed by the (source).	Department of Defense
Year the first email was ever sent? (source)	1971
Name of first computer programmer? (source)	Ada Lovelace
The first computer, known as the ENIAC, weighedtons and took up an entire room (<u>source</u>).	30
% of the world's data was created in the last 2 years. (source)	90
Alan Turing used computer science to crack German codes in WWII. (source)	True

Think-Pair-Share: Write the above sentences on the board, and scramble the answer bank. Students in pairs should match the correct answers to their sentences. Then, ask students to volunteer their answers and *critically* explain their thinking process.

Teaching Tip: A **Think-Pair-Share** activity involves giving students a prompt to think about, then pairing students up to discuss with each other. Finally, students are invited (or called upon) to share their pair's thinking with the group.

Learning Goals

By the end of this lesson, students will be able to:

- define data and describe different types of data.
- combine different computer data types.
- · print different data types.

Standards Alignment

CSTA K-12 Computer	1B-AP-09	Create programs that use variables to store and modify data.
Science Standards	2-AP-11	Create clearly named variables that represent different data types and perform operations on their values.
Tennessee State Computer	MS.AT: Algorithmic Thinking	Use clearly named variables of various data types to create generalized algorithms.
Science Standards	CS.PC: Programming Concepts	Develop a plan to manage and assign data values of different types (strings, numeric, character, integer, and date) to a variable.

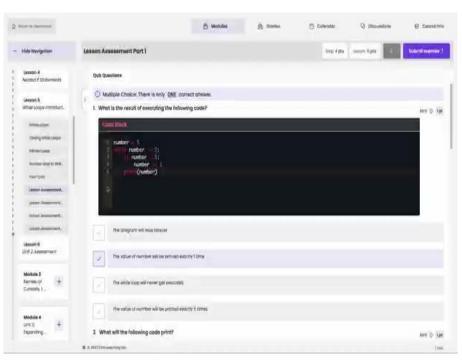
Part 3: Recommended In-Class Instruction

Lesson Part A

Outline with Timings

Section 1 Overview	10 min.	Introduce the learning goals and concept of data typand type inference.	
Section 2 Activity	35 min.	Students will work through Steps 1-5 in Unit 1 Lesson 3: Data Types by watching the videos and doing the exercises.	

Before the Lesson

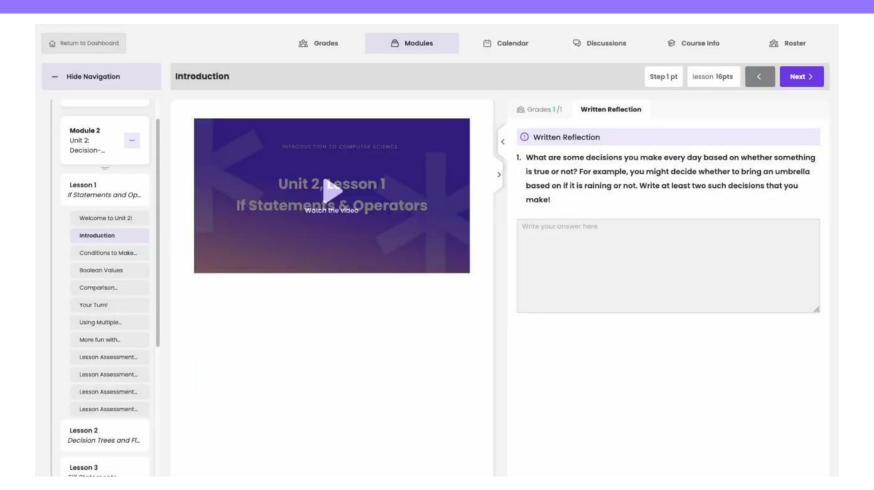

- $\hfill \square$ Write the Do Now sentences and their answers (in scrambled order) on the board, or project them on a screen, or print them out and distribute them.
- □ Complete the lesson activities on your own so that you are prepared to answer questions and provide support as needed.

Kira Learning Platform

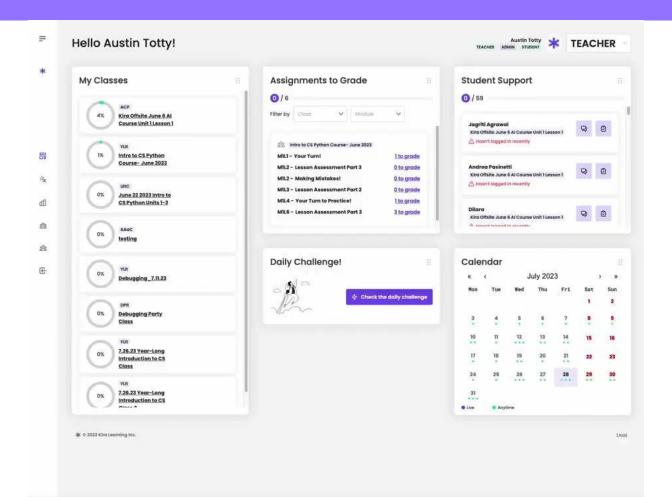
STUDENT EXPERIENCE: CLASS AND ACTIVITIES

TEACHER EXPERIENCE: PROVIDING FEEDBACK

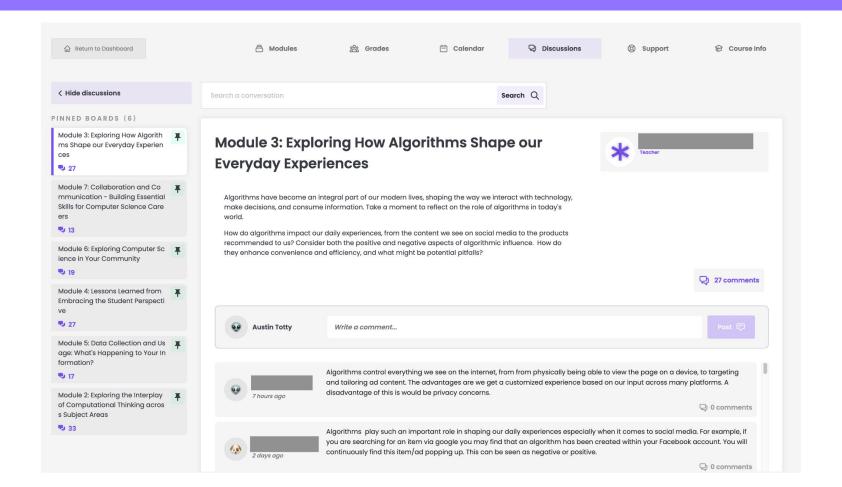
TEACHER VIEW


TEACHER EXPERIENCE: PROVIDING FEEDBACK

STUDENT VIEW



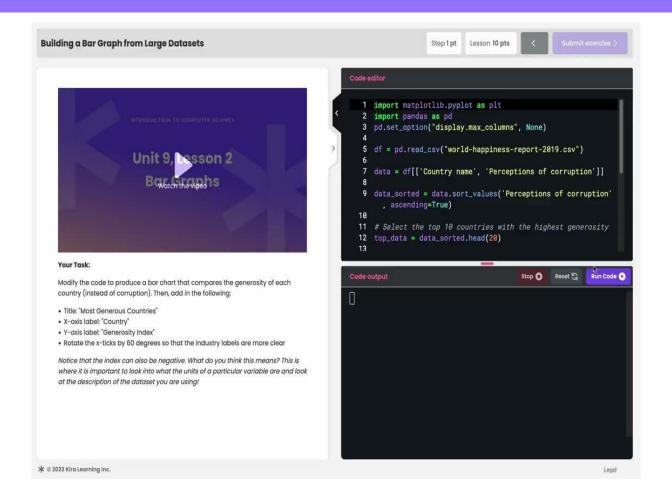
TEACHER EXPERIENCE: GRADEBOOK



TEACHER EXPERIENCE: INVITING STUDENTS & ROSTERS

DISCUSSION BOARDS

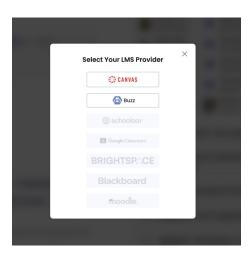
DASHBOARD

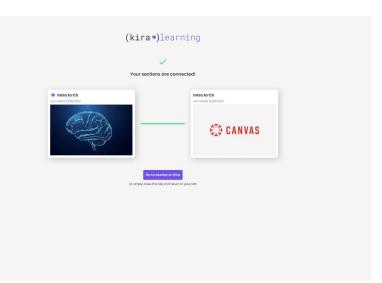


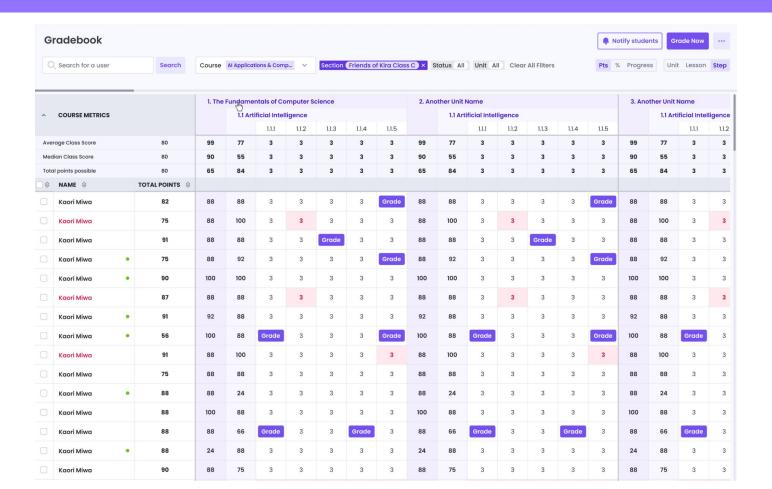
IN DETAIL: PLATYPUS ACTIVITY

IN DETAIL: IN-CLASS IDE

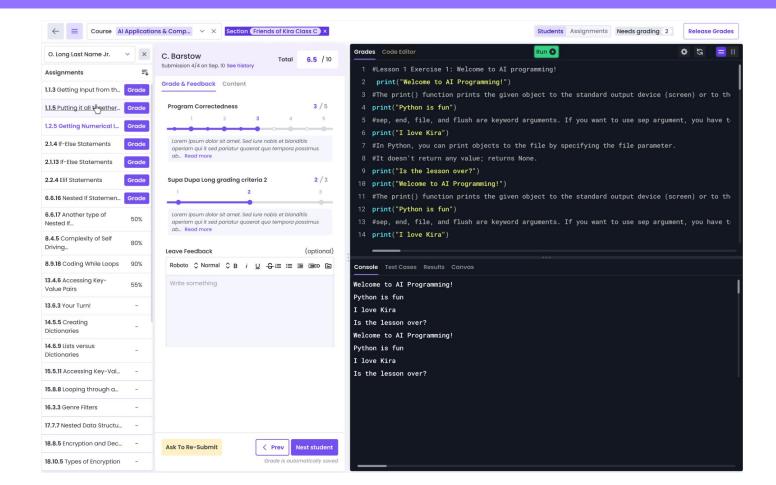
Upcoming Features




AI TUTOR


LMS INTEGRATIONS

- LTI 1.3 Advantage
- SSO
- Roster sync
- Grade/Assignment Sync



GRADEBOOK UPDATES

GRADING UPDATES

Visit <u>www.kira-learning.com</u> or <u>www.computersciencetn.org</u>

For questions about the Kira platform or courses:

tn@kira-learning.com

For all other questions:

ashe@battelle.org